转自:
“在一棵树上进行路径的修改、求极值、求和”乍一看只要线段树就能轻松解决,实际上,仅凭线段树是不能搞定它的。我们需要用到一种貌似高级的复杂算法——树链剖分。
树链,就是树上的路径。剖分,就是把路径分类为重链和轻链。 记siz[v]表示以v为根的子树的节点数,dep[v]表示v的深度(根深度为1),top[v]表示v所在的重链的顶端节点,fa[v]表示v的父亲,son[v]表示与v在同一重链上的v的儿子节点(姑且称为重儿子),w[v]表示v与其父亲节点的连边(姑且称为v的父边)在线段树中的位置。只要把这些东西求出来,就能用logn的时间完成原问题中的操作。 重儿子:siz[u]为v的子节点中siz值最大的,那么u就是v的重儿子。 轻儿子:v的其它子节点。 重边:点v与其重儿子的连边。 轻边:点v与其轻儿子的连边。 重链:由重边连成的路径。 轻链:轻边。 剖分后的树有如下性质: 性质1:如果(v,u)为轻边,则siz[u] * 2 < siz[v]; 性质2:从根到某一点的路径上轻链、重链的个数都不大于logn。 算法实现: 我们可以用两个dfs来求出fa、dep、siz、son、top、w。 dfs_1:把fa、dep、siz、son求出来,比较简单,略过。
dfs_2:⒈对于v,当son[v]存在(即v不是叶子节点)时,显然有top[son[v]] = top[v]。线段树中,v的重边应当在v的父边的后面,记w[son[v]] = totw+1,totw表示最后加入的一条边在线段树中的位置。此时,为了使一条重链各边在线段树中连续分布,应当进行dfs_2(son[v]);
⒉对于v的各个轻儿子u,显然有top[u] = u,并且w[u] = totw+1,进行dfs_2过程。 这就求出了top和w。 将树中各边的权值在线段树中更新,建链和建线段树的过程就完成了。 修改操作:例如将u到v的路径上每条边的权值都加上某值x。 一般人需要先求LCA,然后慢慢修改u、v到公共祖先的边。而高手就不需要了。 记f1 = top[u],f2 = top[v]。 当f1 <> f2时:不妨设dep[f1] >= dep[f2],那么就更新u到f1的父边的权值(logn),并使u = fa[f1]。 当f1 = f2时:u与v在同一条重链上,若u与v不是同一点,就更新u到v路径上的边的权值(logn),否则修改完成; 重复上述过程,直到修改完成。 求和、求极值操作:类似修改操作,但是不更新边权,而是对其求和、求极值。 就这样,原问题就解决了。鉴于鄙人语言表达能力有限,咱画图来看看: 如右图所示,较粗的为重边,较细的为轻边。节点编号旁边有个红色点的表明该节点是其所在链的顶端节点。边旁的蓝色数字表示该边在线段树中的位置。图中1-4-9-13-14为一条重链。 当要修改11到10的路径时。 第一次迭代:u = 11,v = 10,f1 = 2,f2 = 10。此时dep[f1] < dep[f2],因此修改线段树中的5号点,v = 4, f2 = 1; 第二次迭代:dep[f1] > dep[f2],修改线段树中10--11号点。u = 2,f1 = 2; 第三次迭代:dep[f1] > dep[f2],修改线段树中9号点。u = 1,f1 = 1; 第四次迭代:f1 = f2且u = v,修改结束。**数据规模大时,递归可能会爆栈,而非递归dfs会很麻烦,所以可将两个dfs改为宽搜+循环。即先宽搜求出fa、dep,然后逆序循环求出siz、son,再顺序循环求出top和w。1 const int maxn 50005; 2 struct Edge 3 { 4 int v; 5 int next; 6 }edge[maxn*2]; 7 int head[maxn]; 8 int num[maxn]; 9 int tot;10 11 int pos;12 int sz[maxn];13 int fa[maxn];14 int deep[maxn];15 int son[maxn];16 int top[maxn];17 int id[maxn];18 19 void dfs1(int u,int father,int d)20 {21 int p,v;22 deep[u]=d;23 fa[u]=father;24 sz[u]=1;25 for(p=head[u];p!=0;p=edge[p].next)26 {27 v=edge[p].v;28 if(v!=father)29 {30 dfs(v,u,d+1);31 sz[u]+=sz[v];32 if(sz[v]>sz[son[u]])33 son[u]=v;34 }35 }36 }37 void dfs2(int u,int top0)38 {39 int p;40 int v;41 top[u]=top0;42 id[u]=pos++;43 if(son[u]==0)44 return;45 dfs2(son[u],top0);46 for(p=head[u];p!=0;p=edge[p].next)47 {48 v=edge[p].v;49 if(v!=son[u]&&v!=fa[u])50 dfs2(v,v);51 }52 }